2,155 research outputs found

    Hybrid FPMS: A New Fairness Protocol Management Scheme for Community Wireless Mesh Networks

    Full text link
    Node cooperation during packet forwarding operations is critically important for fair resource utilization in Community Wireless Mesh Networks (CoWMNs). In a CoWMN, node cooperation is achieved by using fairness protocols specifically designed to detect and isolate malicious nodes, discourage unfair behavior, and encourage node participation in forwarding packets. In general, these protocols can be split into two groups: Incentive-based ones, which are managed centrally, and use credit allocation schemes. In contrast, reputation-based protocols that are decentralized, and rely on information exchange among neighboring nodes. Centrally managed protocols inevitably suffer from scalability problems. The decentralized, reputation-based protocols lacks in detection capability, suffer from false detections and error propagation compared to the centralized, incentive-based protocols. In this study, we present a new fairness protocol management scheme, called Hybrid FPMS that captures the superior detection capability of incentive-based fairness protocols without the scalability problems inherently expected from a centralized management scheme as a network's size and density grows. Simulation results show that Hybrid FPMS is more efficient than the current centralized approach and significantly reduces the network delays and overhead.Comment: KSII Transactions on Internet and Information Systems, 201

    Joint Blind Motion Deblurring and Depth Estimation of Light Field

    Full text link
    Removing camera motion blur from a single light field is a challenging task since it is highly ill-posed inverse problem. The problem becomes even worse when blur kernel varies spatially due to scene depth variation and high-order camera motion. In this paper, we propose a novel algorithm to estimate all blur model variables jointly, including latent sub-aperture image, camera motion, and scene depth from the blurred 4D light field. Exploiting multi-view nature of a light field relieves the inverse property of the optimization by utilizing strong depth cues and multi-view blur observation. The proposed joint estimation achieves high quality light field deblurring and depth estimation simultaneously under arbitrary 6-DOF camera motion and unconstrained scene depth. Intensive experiment on real and synthetic blurred light field confirms that the proposed algorithm outperforms the state-of-the-art light field deblurring and depth estimation methods

    Deep Depth From Focus

    Full text link
    Depth from focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end learning approach to this problem. One of the main challenges we face is the hunger for data of deep neural networks. In order to obtain a significant amount of focal stacks with corresponding groundtruth depth, we propose to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to digitally create focal stacks of varying sizes. Compared to existing benchmarks our dataset is 25 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that our proposed method `DDFFNet' achieves state-of-the-art performance in all scenes, reducing depth error by more than 75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    Granularity-induced gapless superconductivity in NbN films: evidence of thermal phase fluctuations

    Full text link
    Using a single coil mutual inductance technique, we measure the low temperature dependence of the magnetic penetration depth in superconducting NbN films prepared with similar critical temperatures around 16 K but with different microstructures. Only (100) epitaxial and weakly granular (100) textured films display the characteristic exponential dependence of conventional BCS s-wave superconductors. More granular (111) textured films exhibit a linear dependence, indicating a gapless state in spite of the s-wave gap. This result is quantitatively explained by a model of thermal phase fluctuations favored by the granular structure.Comment: 10 pages, 4 figures, to appear in Phys. Rev.

    Extraction of Electron Self-Energy and Gap Function in the Superconducting State of Bi_2Sr_2CaCu_2O_8 Superconductor via Laser-Based Angle-Resolved Photoemission

    Full text link
    Super-high resolution laser-based angle-resolved photoemission measurements have been performed on a high temperature superconductor Bi_2Sr_2CaCu_2O_8. The band back-bending characteristic of the Bogoliubov-like quasiparticle dispersion is clearly revealed at low temperature in the superconducting state. This makes it possible for the first time to experimentally extract the complex electron self-energy and the complex gap function in the superconducting state. The resultant electron self-energy and gap function exhibit features at ~54 meV and ~40 meV, in addition to the superconducting gap-induced structure at lower binding energy and a broad featureless structure at higher binding energy. These information will provide key insight and constraints on the origin of electron pairing in high temperature superconductors.Comment: 4 pages, 4 figure

    Cathode Optimization for an Inert-Substrate-Supported Tubular Solid Oxide Fuel Cell

    Get PDF
    Inert-substrate-supported tubular solid oxide fuel cells with multi-functional layers were fabricated in this work. The tubular single cells consisted of a porous yttria-stabilized zirconia inert-substrate supporting layer, a Ni anode current collecting layer, a Ni-Ce0.8Sm0.2O1.9 anode electrochemical layer, an yttria-stabilized zirconia/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3−δ cathode. Thickness of the La0.6Sr0.4Co0.2Fe0.8O3−δ cathode layer could be varied from 2.5 to 25.0 μm by controlling the number of dip-coatings in the single cell fabrication process. Electrochemical performance of the tubular single cells was investigated as a function of cathode thickness. Area specific resistance and maximum power density of the single cell were significantly affected by the thickness of the cathode. Increasing the cathode thickness to 15 μm was effective in reducing the sheet resistance of the layer and the area specific resistance of the single cell. Further increasing the cathode thickness induced a higher electrode polarization loss, which originated from insufficient gas diffusion and transport processes. Therefore, the optimum thickness of the La0.6Sr0.4Co0.2Fe0.8O3−δ cathode layer was determined to be 15 μm. At 800°C, the tubular single cell with the optimum cathode thickness displayed the highest observed maximum power density of 559 mWcm−2 under the hydrogen/air operation mode. Additionally, the tubular single cell exhibited good thermal cycling stability between 800 and 25°C for five cycles. These results illustrate the advantages of this system for future applications of the inert-substrate-supported tubular single cells in repeated startup and shut down conditions
    corecore